Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(47): 77591-77606, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27769056

RESUMO

Neuroblastoma is the most frequent, extracranial solid tumor in children with still poor prognosis in stage IV disease. In this study, we analyzed FOXO3-phosphorylation and cellular localization in tumor biopsies and determined the function of this homeostasis regulator in vitro and in vivo. FOXO3-phosphorylation at threonine-32 (T32) and nuclear localization in biopsies significantly correlated with stage IV disease. DNA-damaging drugs induced nuclear accumulation of FOXO3, which was associated with elevated T32-phosphorylation in stage IV-derived neuroblastoma cells, thereby reflecting the in situ results. In contrast, hypoxic conditions repressed PKB-activity and caused dephosphorylation of FOXO3 in both, stroma-like SH-EP and high-stage-derived STA-NB15 cells. The activation of an ectopically-expressed FOXO3 in these cells reduced viability at normoxia, but promoted growth at hypoxic conditions and elevated VEGF-C-expression. In chorioallantoic membrane (CAM) assays STA-NB15 tumors with ectopic FOXO3 showed increased micro-vessel formation and, when xenografted into nude mice, a gene-dosage-dependent effect of FOXO3 in high-stage STA-NB15 cells became evident: low-level activation increased tumor-vascularization, whereas hyper-activation repressed tumor growth.The combined data suggest that, depending on the mode and intensity of activation, cellular FOXO3 acts as a homeostasis regulator promoting tumor growth at hypoxic conditions and tumor angiogenesis in high-stage neuroblastoma.


Assuntos
Núcleo Celular/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Neuroblastoma/patologia , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Dosagem de Genes , Humanos , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Neuroblastoma/irrigação sanguínea , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilação , Prognóstico , Análise de Sobrevida , Treonina/metabolismo
2.
FEBS Open Bio ; 4: 659-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161875

RESUMO

Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sang bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 µM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.

3.
Mol Biol Cell ; 23(11): 2226-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22493319

RESUMO

Forkhead box O (FOXO) transcription factors control diverse cellular functions, such as cell death, metabolism, and longevity. We analyzed FOXO3/FKHRL1 expression and subcellular localization in tumor sections of neuroblastoma patients and observed a correlation between nuclear FOXO3 and high caspase-8 expression. In neuroblastoma caspase-8 is frequently silenced by DNA methylation. Conditional FOXO3 activated caspase-8 gene expression but did not change the DNA-methylation pattern of regulatory sequences in the caspase-8 gene. Instead, FOXO3 induced phosphorylation of its binding partner ATM and of the ATM downstream target cAMP-responsive element binding protein (CREB), which was critical for FOXO3-mediated caspase-8 expression. Caspase-8 levels above a critical threshold sensitized neuroblastoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced cell death. The DNA-demethylating drug 5-Aza-2-deoxycytidine (5-azadC) induced rapid nuclear accumulation of FOXO3, ATM-dependent CREB phosphorylation, and caspase-8 expression in a FOXO3-dependent manner. This indicates that 5-azadC activates the FOXO3-ATM-CREB signaling pathway, which contributes to caspase-8 expression. The combined data suggest that FOXO3 is activated by 5-azadC treatment and triggers expression of caspase-8 in caspase-8-negative neuroblastoma, which may have important implication for metastasis, therapy, and death resistance of this childhood malignancy.


Assuntos
Azacitidina/análogos & derivados , Caspase 8/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inativação Gênica/efeitos dos fármacos , Neuroblastoma/enzimologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Azacitidina/farmacologia , Sequência de Bases , Caspase 8/biossíntese , Caspase 8/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Decitabina , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Proteína Forkhead Box O3 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Supressoras de Tumor/metabolismo
4.
J Biol Chem ; 284(45): 30933-40, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19737931

RESUMO

Loss of CDKN2A/p16(INK4A) in hematopoietic stem cells is associated with enhanced self-renewal capacity and might facilitate progression of damaged stem cells into pre-cancerous cells that give rise to leukemia. This is also reflected by the frequent loss of the INK4A locus in acute lymphoblastic T-cell leukemia. T-cell acute lymphoblastic leukemia cells designed to conditionally express p16(INK4A) arrest in the G(0)/G(1) phase of the cell cycle and show increased sensitivity to glucocorticoid- and tumor necrosis factor receptor superfamily 6-induced apoptosis. To investigate the underlying molecular mechanism for increased death sensitivity, we interfered with specific steps of apoptosis signaling by expression of anti-apoptotic proteins. We found that alterations in cell death susceptibility resulted from changes in the composition of pro- and anti-apoptotic BCL2 proteins, i.e. repression of MCL1, BCL2, and PMAIP1/Noxa and the induction of pro-apoptotic BBC3/Puma. Interference with Puma induction by short hairpin RNA technology or retroviral expression of MCL1 or BCL2 significantly reduced both glucocorticoid- and FAS-induced cell death in p16(INK4A)-reconstituted leukemia cells. These results suggest that Puma, in concert with MCL1 and BCL2 repression, critically mediates p16(INK4A)-induced death sensitization and that in human T-cell leukemia the deletion of p16(INK4A) confers apoptosis resistance by shifting the balance of pro- and anti-apoptotic BCL2 proteins toward apoptosis protection.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Proteína Ligante Fas/metabolismo , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Regulação Leucêmica da Expressão Gênica , Glucocorticoides/metabolismo , Humanos , Leucemia/genética , Leucemia/fisiopatologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...